#pragma once#includeusing namespace std;/**************** * 二叉树中 找两个结点的最近的公共祖先结点******************/struct Node{ Node* left; Node* right; int value; Node(int v) :value(v) ,left(NULL) ,right(NULL) {}};
// 方法一 int count 计数
int _find_ancestor(Node* root, Node* & ancestor, const Node* a, const Node* b){ if (root == NULL) { return 0; } int count = 0; count += _find_ancestor(root->left, ancestor, a , b); if (root == a || root == b) { count += 1; } /*if (count == 2) { ancestor = root; }*/ count += _find_ancestor(root->right, ancestor, a, b); if (count == 2) { ancestor = root ; count = 0; // 防止返回 时 上面count的值还是2 导致 ancestor不准确 被覆盖 } return count;}void test_find_ancestor(){ // 1 // 2 3 // 4 5 Node n1(1); Node n2(2); Node n3(3); Node n4(4); Node n5(5); n1.left = &n2; n1.right = &n3; n2.left = &n4; n2.right = &n5; Node* ancestor = NULL; // 4 5 // _find_ancestor(&n1, ancestor,&n4, &n5); // 2 5 // _find_ancestor(&n1, ancestor,&n2, &n5); // 5 3 _find_ancestor(&n1, ancestor,&n5, &n3); }
// 方法二 bool判别
bool find_ancestor_bool(Node* root, Node* & ancestor, const Node* a, const Node* b){ if (root == NULL) { return false; } bool b_left = find_ancestor_bool(root->left, ancestor, a, b); bool b_right = find_ancestor_bool(root->right, ancestor, a, b); if (root == a || root == b) { if (b_left || b_right) { ancestor = root; } return true; } if (b_left && b_right) { ancestor = root; } return b_left || b_right;}void test_find_ancestor_bool(){ // 1 // 2 3 // 4 5 Node n1(1); Node n2(2); Node n3(3); Node n4(4); Node n5(5); n1.left = &n2; n1.right = &n3; n2.left = &n4; n2.right = &n5; Node* ancestor = NULL; // 4 5 //find_ancestor_bool(&n1, ancestor,&n4, &n5); // 2 5 // find_ancestor_bool(&n1, ancestor,&n2, &n5); // 5 3 // find_ancestor_bool(&n1, ancestor,&n5, &n3); // 1 5 find_ancestor_bool(&n1, ancestor,&n1, &n5); }
// 方法3 利用栈 数组或 链表 记录 找到结点的 路径 最后 遍历两个 栈(数组或链表) 找到第一次出现比相同的点的前一个 即为公共祖先
// 注意 如果当前不是 返回时 要将当前压栈的 元素弹出 栈用引用传入
// 这里以 vector 为例 方便遍历
#includevoid find_ancestor_vector_R(Node* root, vector & va,vector & vb, Node* a, Node* b, Node* &ancestor){ if (root == NULL) { return; } va.push_back(root); vb.push_back(root); find_ancestor_vector_R(root->left, va, vb, a, b, ancestor); find_ancestor_vector_R(root->right, va, vb, a, b, ancestor); if (va.back() != a) { va.pop_back(); } if (vb.back() != b) { vb.pop_back(); }}Node* find_ancestor_vector(Node* root, Node* a, Node* b){ vector va,vb; Node* ancestor = NULL; find_ancestor_vector_R(root, va, vb, a, b, ancestor); // 找va vb 的分叉点 之前的点 int i = 0; while (i < va.size() && i < vb.size() && va[i] == vb[i]) { ancestor = va[i]; i++; } return ancestor;}void test_find_ancestor_vector(){ // 1 // 2 3 // 4 5 Node n1(1); Node n2(2); Node n3(3); Node n4(4); Node n5(5); n1.left = &n2; n1.right = &n3; n2.left = &n4; n2.right = &n5; Node* ancestor = NULL; // 4 5 ancestor = find_ancestor_vector(&n1, &n4, &n5); // 2 5 ancestor = find_ancestor_vector(&n1, &n2, &n5); // 5 3 ancestor = find_ancestor_vector(&n1, &n5, &n3); // 1 5 ancestor = find_ancestor_vector(&n1, &n1, &n5); }